
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Floyd-Warshall Algorithm for Delivery Cost

Optimization in Online Transportation Services

Reysha Syafitri Mulya Ramadhan - 13524137

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: reysha4school@gmail.com , 13524137@std.stei.itb.ac.id

Abstract—Online transportation companies, specifically food

delivery sector, often rely on promotions to attract customers. This

practice raises a critical challenge: sustaining profitability,

making operational efficiency paramount. In this paper, this study

explores the application of the Floyd-Warshall algorithm to

optimize delivery routes by modeling the network as a directed

graph. A simulation using a six-node network demonstrates that

the algorithm successfully identifies all-pairs shortest paths, often

revealing non-obvious, indirect routes. The findings highlight the

use of such algorithms in enhancing cost efficiency and help

companies maintain profitability better.

Keywords—Floyd-Warshall Algorithm; Discreet Mathematics;

Online Transportation Business

I. INTRODUCTION

Online transportation services have experienced rapid

growth in Indonesia, becoming an indispensable part of daily

life for a significant portion of the productive-age population.

The sector, pioneered by major brands since the early 2010s,

has expanded to include numerous companies.

This leads to a central question: how can they sustain such

offers without incurring significant financial losses? The

underlying strategy often lies in rigorous cost control, where

optimizing delivery routes is paramount. Shorter and more

efficient routes then translate directly to reduced operational

costs, enabling companies to offer attractive pricing and

promotions, which in turn stimulates customer demand and

loyalty.

While route optimization is not a new problem, existing

models may not be perfectly suited for the complexities of

modern online delivery. For instance, a notable study on the

Mumbai Dabbawalas by Suraj Patro and Motahar Reza presents

an efficient, large-scale delivery system. However, its

methodology, which relies on a simple coding system and the

local railway network, is not directly transferable to today's

technology-driven platforms that must account for complex

urban road networks [1].

Therefore, this study aims to demonstrate a more suitable

approach for modern online transportation businesses. We

investigate the application of the Floyd-Warshall algorithm to

compute the all-pairs shortest paths within a delivery network,

providing a complete and static distance matrix. Such matrix is

a foundational tool that can empower these companies to

enhance logistical efficiency, reduce operational costs, and

attempts to create a viable model for customer satisfaction and

revenue growth.

II. LITERATURE REVIEW

A. Graph Theory

A graph is a mathematical structure used to model the

relationships between discrete objects. Formally, a graph G is

defined as a pair of sets (V, E), where V is a non-empty set of

vertices {v1, v2, ..., vn}, and E is a set of edges {e1, e2, ..., en}

that represent connections between pairs of those vertices.

Based on the presence of loops or multiple edges, graphs

can be classified into two types, 1) Simple Graph: A graph is

considered a simple graph if it does not contain any loops

(edges that connect a vertex to itself) or multiple edges (more

than one edge connecting the same pair of vertices). 2)

Unsimple Graph (or Multigraph): Conversely, a graph that

contains at least one loop or one pair of multiple edges is known

as an unsimple graph or, more commonly, a multigraph.

Figure 1. Illustration of Simple Graph (left)

and Unsimple Graph (right) Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf, accessed on 20/06/2025

Based on the orientation of their edges, graphs are classified

into two main types. An undirected graph consists of edges that

have no specific orientation. In contrast, a directed graph (or

digraph) is a graph in which every edge is given a distinct

orientation from one vertex to another.

mailto:reysha4school@gmail.com
mailto:13524137@std.stei.itb.ac.id
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Figure 2. Illustration of Undirected Graph (left)

and Directed Graph (right) Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-

2025/20-Graf-Bagian1-2024.pdf, accessed on 20/06/2025

B. Floyd Warshall Algorithm

The following explanation of the Floyd-Warshall algorithm

below is adapted from [2].

B.1 Definition

The Floyd-Warshall algorithm operates by using a two-
dimensional array to store the shortest distances between all
pairs of nodes. At the beginning, this array is initialized with the
direct edge weights between nodes. The algorithm then
iteratively updates the array by checking whether shorter paths
can be found through intermediate nodes.

It is applicable to both directed and undirected weighted
graphs and can handle edges with positive or negative weights.
However, it does not work correctly on graphs that contain
negative cycles—cycles in which the total sum of edge weights
is negative.

B.2 Concept behind the algorithm

Given a graph represented by a dist[][] matrix with V
vertices labelled from 0 to V-1, the goal is to compute the
shortest distances between every pair of vertices, where dist[i][j]
holds the shortest distance from vertex i to vertex j.

The core idea of the Floyd-Warshall algorithm is to treat
each vertex k (from 0 to V-1) as a potential intermediate point
between all pairs of vertices (i, j). When processing vertex k, it
is assumed that all shortest paths using only vertices 0 to k-1
have already been determined. This enables the algorithm to
refine previous shortest paths and refine them by including
vertex k.

B.3 Proof

 The algorithm is based on the principle of optimal
substructure, which states that: If the shortest path from vertex i
to vertex j passes through an intermediate vertex k, then both the
sub-paths i → k and k → j must themselves be shortest paths.

By iteratively considering each vertex as an intermediate
node and using already computed shortest paths for smaller
subsets of nodes, the algorithm guarantees globally optimal
distances.

B.4 Step-by-Step Implementation

The implementation of the Floyd-Warshall algorithm is

fundamentally an iterative process that updates a distance

matrix. The procedure can be detailed as follows:

1. Distance Matrix Initialization: The first step is to

initialize a V × V distance matrix, dist, where V is the

number of vertices in the graph. For each pair of

vertices (i, j), dist[i][j] is populated with the direct

edge weight from i to j. If no direct edge exists, its

value is set to infinity (∞) to indicate that no path is yet

known. The distance from a vertex to itself, dist[i][i],

is always initialized to 0.

2. Iterative Processing: The algorithm then iterates

through all vertices in the graph, from k = 0 to V-1. In

each iteration, vertex k is considered as a potential

intermediate node for all possible pairs of vertices (i,

j).

3. Distance Update: For every pair (i, j), the existing

distance dist[i][j] is compared against the length of the

path passing through k, which is dist[i][k] + dist[k][j].

If the path via k is shorter, dist[i][j] is updated with this

lower value. This operation is formally expressed as:

Upon completion of all iterations, the dist matrix will

contain the shortest path distances between every pair of

vertices in the graph.

C. Comparison of Shortest Path Algorithms

In the field of graph theory, several algorithms exist for

finding the shortest path, each with distinct characteristics and

use cases. The selection of an appropriate algorithm is crucial

as it depends on the specific requirements of the problem, such

as graph structure and the desired output.

Dijkstra's algorithm is widely recognized for its efficiency

in solving the single-source shortest path (SSSP) problem [5].

It excels at finding the shortest path from a single origin node

to all other nodes in a graph. The algorithm operates by

iteratively selecting the node with the smallest known distance

that has not yet been visited, making it highly effective for

graphs where all edge weights are non-negative [6]. However,

its fundamental limitation is its inability to correctly process

graphs containing negative edge weights, as this can lead to

erroneous path calculations [5].

To address the limitation of negative weights, the Bellman-

Ford algorithm provides a more robust solution [6]. It also

solves the SSSP problem but can operate on graphs that include

edges with negative values. Its iterative approach, which

relaxes edges |V|-1 times, guarantees a correct shortest path

calculation in the presence of negative weights and provides the

added benefit of detecting negative-weight cycles—a condition

where an infinitely short path could exist [7]. The trade-off for

this versatility is a slower computational performance

compared to Dijkstra's algorithm on graphs with exclusively

non-negative weights [6].

While both Dijkstra's and Bellman-Ford's algorithms are

designed to compute paths from a single source, the Floyd-

Warshall algorithm addresses the all-pairs shortest path (APSP)

problem [5]. Its purpose is to compute the shortest distance

between every possible pair of vertices in a given graph

simultaneously. To achieve the same result with an SSSP

algorithm, one would need to execute it once for each vertex in

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/20-Graf-Bagian1-2024.pdf

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

the graph, which is often less efficient [7]. The Floyd-Warshall

algorithm is therefore exceptionally well-suited for applications

where a complete, static matrix of all shortest routes is needed

beforehand. In the context of a delivery service network, this

allows for the pre-computation of all potential routes, enabling

quick lookups for dynamic routing and logistical planning.

III. METHOD

This study utilizes a C++ implementation of the Floyd-
Warshall algorithm to determine the shortest path distance
between all pairs of nodes in a weighted, directed graph. The
methodology is divided into the experimental setup and the
graph construction for simulation.

A. Implementation and Pseudocode

The graph is represented by a V × V adjacency matrix, dist,
where V is the total number of nodes. Each element dist[i][j]
stores the weight of the directed edge from node i to node j. If
no direct edge exists between two nodes, dist[i][j] is assigned a
large integer value (e.g., 10⁸) to represent infinity. The diagonal
elements, dist[i][i], are initialized to 0. The implementation is
designed to handle graphs with non-negative edge weights.

The core logic follows the standard Floyd-Warshall
algorithm, as detailed in the pseudocode below:

Algorithm 1: Floyd-Warshall

Input: A V × V adjacency matrix dist Output: The matrix dist
containing all-pairs shortest paths

1: for k ← 0 to V-1 do

2: for i ← 0 to V-1 do

3: for j ← 0 to V-1 do

4: if dist[i][k] + dist[k][j] < dist[i][j] then

5: dist[i][j] ← dist[i][k] + dist[k][j]

6: end if

7: end for

8: end for

9: end for

10: return dist

B. Graph Construction for Simulation

To create a realistic test case, a weighted, directed graph of
a small urban area was constructed using geographical data
sourced from Google Earth. The network consists of six nodes,
representing two points of origin (restaurants) and four delivery
destinations (houses).

The initial edge weights, representing the travel distance
between directly connected nodes, were measured using the
'Measure distance' tool available in Google Earth. Each
measurement was traced along (assumed) plausible road
networks to approximate the actual routes a delivery driver
would take. The resulting network topology and initial distances
are visualized in Fig. 3 and detailed in TABLE I.

Figure 3. Illustration of 6 nodes graph

Souce: https://earth.google.com, accessed on 19/06/2025

Several key assumptions were made during the construction

of this model to maintain a clear scope:

• Static Environment: The model is static. All edge

weights (distances) are considered constant and do not

account for dynamic variables such as real-time traffic

conditions, road closures, or traffic signals.

• Distance as Cost: The primary metric for optimization

is travel distance. It serves as a direct proxy for

operational costs (e.g., fuel) and delivery time. Factors

such as tolls or driver compensation models are not

included.

• Directed Paths: The graph is modeled as a directed

graph to accurately reflect real-world urban road

conditions, such as one-way streets, where the travel

distance from node A to B may not be the same as from

B to A.

TABLE I. Initial Matrix of 6 Nodes (h stands for

home/houses, r stands for restaurants).

IV. RESULTS AND ANALYSIS

The algorithm iterated six times (for k = 0 to 5), treating

each node as an intermediate vertex to find potential shortcuts.

Through this process, numerous path distances were updated as

shorter routes were discovered. For instance, the path from node

h0 to h3, which was initially non-existent (∞), was updated to

220.60 meters via the intermediate node h1. Similarly, the path

from h2 to r2 was established through r1 with a final distance

of 450.03 meters.

from/to h0 h1 h2 h3 r1 r2

h0 0
156.68

m
485.39

m ∞
652.86

m
202.55

m

h1 ∞ 0
308.49

m
63.92

m
371.44

m ∞

h2 ∞ ∞ 0 ∞
130.51

m ∞
h3 ∞ ∞ ∞ 0 ∞ 53.5 m

r1 ∞ ∞ ∞ ∞ 0
319.52

m

r2
202.55

m ∞ ∞ ∞ ∞ 0

https://earth.google.com/

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

A. Step-by-Step Iteration Analysis

To demonstrate how the algorithm progressively finds

shorter paths, the state of the distance matrix after the first two

iterations is examined.

1. Iteration k = 0 (Intermediate Node: h0): The algorithm

first considers h0 as an intermediate node. It checks if

traveling through h0 can create new paths or shorten

existing ones. The most significant changes occur for

paths originating from node r2, as it has a direct

connection to h0. For instance, the path from r2 to h1

was previously unknown (infinity). By routing

through h0, a path is established with a distance of

dist[r2][h0] + dist[h0][h1] = 202.55 + 156.68 = 359.23

meters. Similar updates were made for other pairs, as

shown in TABLE II.

TABLE II. First Iteration Matrix with k = 0

from/to h0 h1 h2 h3 r1 r2
h0 0.00 156.68 485.39 inf 652.86 202.55
h1 inf 0.00 308.49 63.92 371.44 inf
h2 inf inf 0.00 inf 130.51 inf
h3 inf inf inf 0.00 inf 53.50
r1 inf inf inf inf 0.00 319.52
r2 202.55 359.23 687.94 inf 855.41 0.00

2. Iteration k = 1 (Intermediate Node: h1): In the next

iteration, h1 is used as the intermediate node. This step

yields several critical path optimizations. A key

discovery is the path from h0 to h3. Previously infinite,

the algorithm now finds a route via h1 (h0 → h1 →

h3), calculating the distance as dist[h0][h1] +

dist[h1][h3] = 156.68 + 63.92 = 220.6 meters.

Furthermore, an existing path, such as from h0 to h2,

is improved. The initial direct distance of 485.39

meters is replaced by the shorter path through h1,

which is 156.68 + 308.49 = 465.17 meters. The matrix

after these updates is shown in TABLE III.

TABLE III. Second Iteration Matrix with k = 1

from/to h0 h1 h2 h3 r1 r2
h0 0.00 156.68 465.17 220.6 528.12 202.55
h1 inf 0.00 308.49 63.92 371.44 inf
h2 inf inf 0.00 inf 130.51 inf
h3 inf inf inf 0.00 inf 53.50
r1 inf inf inf inf 0.00 319.52
r2 202.55 359.23 667.72 423.15 730.67 0.00

B. Final Distance Matrix and Insights

The final matrix, containing the shortest path distances

between all pairs of nodes, is shown in TABLE IV.

TABLE IV. Final Result Matrix

from/to h0 h1 h2 h3 r1 r2
h0 0.00 156.68 465.17 220.60 528.12 202.55
h1 319.97 0.00 308.49 63.92 371.44 117.42
h2 652.58 809.26 0.00 873.18 130.51 450.03
h3 256.05 412.73 721.22 0.00 784.17 53.50

r1 522.07 678.75 987.24 742.67 0.00 319.52
r2 202.55 359.23 667.72 423.15 730.67 0.00

The final distance matrix reveals several key insights. A

primary finding is the importance of path directionality in route
optimization. For example, the shortest path from h1 to r1 is
371.44 meters, whereas the return path from r1 to h1 is
significantly longer at 678.75 meters. This asymmetry, common
in urban environments with one-way streets, highlights the
necessity of using a directed graph model for accurate cost
calculation.

Furthermore, the results imply that pre-computing an all-
pairs shortest path matrix allows a system to dynamically select
the most efficient routes. With optimal paths pre-computed,
online transportation businesses can reduce total travel distance
and time, which in turn lowers operational expenses for fuel and
driver compensation. Over time, these efficiencies can
significantly improve profitability and service speed.

V. LIMITATIONS

While this study successfully demonstrates the applicability

of the Floyd-Warshall algorithm for delivery route

optimization, it is important to acknowledge the boundaries and

assumptions of the model to contextualize the findings. The

primary limitations of this research are as follows:

• Static Environment Model: The simulation is based on

a static graph where edge weights represent fixed

distances derived from Google Earth. This model does

not account for the dynamic nature of a real-world

urban environment. Variables such as real-time traffic

congestion, road closures, weather conditions, and

time-of-day fluctuations (e.g., rush hour) are not

considered, yet they critically affect optimal route

selection in practice.

• Simplified Cost Function: The optimization in this

study uses travel distance as the sole proxy for

operational cost. A more comprehensive cost model

for a transportation business would also incorporate

other significant factors, including variable fuel

consumption, vehicle maintenance schedules, driver

wages, potential road tolls, and the implicit cost of

meeting customer delivery time windows.

• Absence of Operational Constraints: The model does

not factor in practical operational constraints faced by

delivery services. These include vehicle capacity (the

maximum number of orders a driver can carry), order

batching strategies (grouping multiple orders for

efficiency), or the dynamic assignment of incoming

orders to available drivers. The analysis assumes an

unconstrained, one-to-one delivery scenario for each

calculated path.

Acknowledging these limitations highlights that while the

Floyd-Warshall algorithm provides a powerful foundational

tool for a static network, its direct implementation must be

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

enhanced for a fully dynamic, real-world logistics system.

These points serve as a direct basis for the future work proposed

in the conclusion.

VI. PRACTICAL IMPLICATIONS AND FUTURE WORK

While the core analysis has demonstrated the algorithm's

effectiveness, it is valuable to discuss how these findings

translate into real-world operational strategies and what future

research directions this opens.

A. Practical Implications for Businesses

The pre-computed all-pairs shortest path matrix, generated by

the Floyd-Warshall algorithm, is not merely a theoretical

outcome; it is a powerful foundational tool for enhancing

logistical operations in several ways:

1. High-Speed Route Lookups: In a live system, this

static matrix can be stored in a high-speed, in-memory

database. When the dispatch system needs to assign a

driver, it does not need to compute a route from

scratch. Instead, it can perform a near-instantaneous

lookup of the distance between any restaurant and

customer. This drastically reduces server load and

response time, which is critical during peak hours.

2. Foundation for Order Batching: Although the model in

this paper does not cover order batching, the generated

matrix is a prerequisite for it. To determine the most

efficient route for a driver delivering multiple orders

(e.g., from Restaurant A to Customer B then Customer

C), the system can use the matrix to quickly calculate

and compare the total distance of all possible

permutations (e.g., A → B → C vs. A → C → B). This

enables the development of sophisticated, multi-stop

optimization features.

3. Strategic Network Analysis: Beyond real-time

dispatching, the distance matrix is a valuable asset for

strategic business planning. By analyzing the matrix,

a company can identify which areas are "costly" to

serve, which routes are most efficient, and where to

strategically place driver waiting hubs or "cloud

kitchens" to minimize average delivery distance across

the entire network.

B. Future Work

The limitations identified in the previous section naturally point

toward several avenues for future research to create a more

robust and dynamic model:

1. Integration with Real-Time Data: A key next step is

transforming the current static model into a dynamic

one. This would involve integrating real-time data

from APIs (e.g., Google Maps API) to update edge

weights based on current traffic congestion. Such a

system might use a hybrid approach: using the Floyd-

Warshall matrix as a baseline, but running a faster

single-source algorithm like A* or Dijkstra for real-

time adjustments on routes affected by traffic

anomalies.

2. Advanced Cost Modeling: Future models could move

beyond distance as a simple cost proxy. A multi-

objective cost function could be developed,

incorporating variables like estimated fuel

consumption (which varies with speed and traffic),

road tolls, and time-based driver compensation. This

would provide a more accurate reflection of true

operational costs.

3. Solving the Vehicle Routing Problem (VRP): To fully

address operational constraints like vehicle capacity

and delivery time windows, future work should frame

the problem as a Vehicle Routing Problem (VRP).

VRP is a well-known class of problems in operations

research that aims to find the optimal set of routes for

a fleet of vehicles to serve a number of customers. This

would represent a significant step up in model

complexity and real-world accuracy.

VII. CONCLUSION

 This study successfully demonstrated the application of the

Floyd-Warshall algorithm for computing all-pairs shortest

paths in a simulated urban delivery network. By utilizing real-

world geographical data to model the graph, the algorithm

effectively identified optimized routes, many of which were

non-obvious, indirect paths established through intermediate

nodes.

The key findings confirm the algorithm's suitability for this

application. First, the results underscore the critical importance

of path directionality, as asymmetrical travel distances (e.g., the

path from h1 to r1 versus r1 to h1) significantly affect cost and

efficiency. Second, the systematic, iterative process of the

algorithm guarantees that all possible routes are evaluated,

ensuring the final distance matrix is globally optimal.

Ultimately, the pre-computed matrix of shortest paths

provides a powerful tool for online transportation businesses. It

enables the development of more efficient routing logic, which

can lead to a direct reduction in operational costs, faster

delivery times, and improved service reliability. Such

optimization supports sustainable business operations in a

competitive environment. Future work could extend this model

to incorporate dynamic variables such as real-time traffic

conditions.

ACKNOWLEDGMENT

The author wishes to express the deepest gratitude to God

Almighty for His grace and blessings, which made the

completion of this work possible.

Sincere appreciation is extended to Dr. Ir. Rinaldi Munir,

M.T., the lecturer for the IF2120 Discrete Mathematics course

at the Institut Teknologi Bandung. His insightful guidance,

clear explanations of complex concepts such as graph theory

and dynamic programming, and unwavering support

throughout the semester were instrumental in shaping the

direction and quality of this paper.

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

The author is also grateful to the Informatics Program and

the School of Electrical Engineering and Informatics at the

Institut Teknologi Bandung for providing an academic

environment that is conducive to learning and research.

Special thanks are also due to colleagues and classmates for

the engaging discussions, valuable feedback, and collaborative

atmosphere that enriched the learning process. Finally, the

author would like to convey thanks to family and friends for

their constant encouragement, patience, and unwavering

support throughout this endeavour.

The author would also like to acknowledge the use of

generative artificial intelligence tools for assistance in language

refinement and content structuring for this paper.

REFERENCES

[1] S. Patro and M. Reza, "Optimization of a Large-Scale Lunch Box
Delivery System - A Simple, Serializable, Synchronous, Parallel
Simulated Annealing, and Floyd-Warshall Approach,"1 EasyChair
Preprint no. 1623, 2019.

[2] GeeksforGeeks, "Floyd-Warshall Algorithm," GeeksforGeeks, 2024.
[Online]. Available: https://www.geeksforgeeks.org/floyd-warshall-
algorithm-dp-16/. Accessed: Jun. 19, 2025.

[3] L. M. Wastupranata, "Strategi Rute UAV untuk Pengantaran Obat-obatan
bagi Penderita Covid-19 saat Isolasi Mandiri dengan Algoritma Cheapest
Link & Sirkuit Hamilton"2 [UAV Route Strategy for Delivering
Medicines for Covid-19 Patients during Self-Isolation with the Cheapest
Link Algorithm & Hamiltonian Circuit], student paper, Dept. of
Informatics, Institut Teknologi Bandung, Bandung, Indonesia, 2021.

[4] R. Munir, Matematika Diskrit edisi ketiga. Bandung, 2009.

[5] C. L. Tondo, "Dijkstra's Algorithm: The Shortest Path Algorithm,"
Medium, 2023. [Online]. Available:
https://medium.com/@catherineleninatondo/dijkstras-algorithm-the-
shortest-path-algorithm-244da622c489. Accessed: Jun. 20, 2025.

[6] S. Jang, "Dijkstra vs. Bellman-Ford," Medium, 2023. [Online]. Available:
https://medium.com/@sejang/dijkstra-vs-bellman-ford-290c8846a36a.
Accessed: Jun. 20, 2025.

[7] Programiz, "Bellman-Ford Algorithm," Programiz.com, 2024. [Online].
Available: https://www.programiz.com/dsa/bellman-ford-algorithm.
Accessed: Jun. 20, 2025. [4] B. A. Forouzan and D. F. Mosher,
Foundations of Computer Science, 4th ed. Cengage Learning, 2017, pp.
493-495.

DECLARATION

I hereby declare that this paper is my own work, not an

adaptation or translation of another's work, and is not an act of

plagiarism.

Bandung, 19 June 2025

Reysha Syafitri M.R 13524137

https://www.geeksforgeeks.org/floyd-warshall-algorithm-dp-16/
https://www.geeksforgeeks.org/floyd-warshall-algorithm-dp-16/
https://www.google.com/search?q=https://medium.com/%40catherineleninatondo/dijkstras-algorithm-the-shortest-path-algorithm-244da622c489
https://www.google.com/search?q=https://medium.com/%40catherineleninatondo/dijkstras-algorithm-the-shortest-path-algorithm-244da622c489
https://www.google.com/search?q=https://medium.com/%40sejang/dijkstra-vs-bellman-ford-290c8846a36a
https://www.programiz.com/dsa/bellman-ford-algorithm

